ENSAIOS DE RENDIMENTO PRELIMINAR E AVANÇADO DE LINHAGENS IRGA SELECIONADAS NA SUBESTAÇÃO DE SANTA VITÓRIA DO PALMAR/RS.

Antonio Folgiarini de Rosso, Sérgio Iraçu Gindri Lopes, Paulo Sérgio Carmona, Clóvis Alberto Bauer, João Leodato Nunes Maciel, Gilmar Neves. EEA/IRGA, Caixa Postal 29, CEP: 94930-030, Cachoeirinha-RS. E-mail: irgamelh@via-rs.net

A busca de genótipos mais adaptados às condições agroclimáticas da zona sul do RS, levou o programa de melhoramento do IRGA a conduzir trabalhos específicos na região, onde a pressão de seleção para as características de interesse são maiores, aumentando a probabilidade de identificar genótipos promissores.

Para que isso fosse alcançado, desde o início das atividades, na safra 1993/94, procurou-se identificar entre materiais locais e introduções, aqueles que apresentassem características que conferissem uma maior estabilidade de produção, associada a melhor tolerância ao frio, principalmente no período reprodutivo. Esterilidade de espiguetas, exserção de panículas e mancha de grão foram as principais características observadas. Também, a maior resistência à debulha (pela freqüente ocorrência de ventos na região), assim como resistência à doenças e qualidade de grão, foram fatores considerados durante o processo de seleção.

O objetivo deste trabalho foi avaliar as primeiras linhagens desenvolvidas na subestação de Santa Vitória do Palmar, obtidas a partir de seleção local (iniciada em geração F_2 na safra 1995/96). Para isso, realizou-se ensaio preliminar na safra 1999/00, semeado em 18/11/99. Na safra seguinte (2000/01), instalou-se os ensaios avançado e preliminar semeados em 31/10 e 17/11/00, respectivamente.

O delineamento experimental foi blocos ao acaso com 4 repetições. As unidades experimentais mediram 1,75 x 5,00 metros, com área útil de 1,05 x 4 metros (4,2m²). Na semeadura, utilizou-se 150 kg de sementes aptas por hectare. A adubação de base foi realizada antes do plantio, conforme resultado da análise do solo. Para adubação de cobertura, utilizou-se 50 kg ha⁻¹ de Nitrogênio aos 50 dias após a semeadura.

Foram realizadas as determinações de rendimento de grãos com casca (13% de umidade), ciclo da emergência à 80% do florescimento, estatura de plantas e esterilidade de espiguetas.

No ensaio preliminar da safra 1999/00, composto por 32 genótipos, observou-se que a cultivar IRGA 417 e as linhagens IRGA 411-1-6-1F-A e IRGA 2412-4-3V-1V foram as mais produtivas (Tabela 1). As duas primeiras destacaram-se também por apresentarem baixo percentual de esterilidade de espiguetas. Observou-se que várias linhagens apresentaram potencial produtivo superior ou similar ao das cultivares mais adaptadas a região, como INIA Tacuari, EL PASO 144 e BR-IRGA 410.

Enquanto isso, no ensaio avançado da safra 2000/01, a cultivar BR-IRGA 410 foi o genótipo que apresentou os mais altos rendimentos, sem no entanto mostrar diferença estatística em relação a maioria dos demais materiais avaliados (Tabela 2). Notou-se neste experimento, que entre as mais produtivas (após a cultivar BR-IRGA 410) estão três linhas do cruzamento IRGA 2423 (IRGA 370-42-1-1F-B5/BR-IRGA 410//IRGA 411-1-6-1F-A), as quais espera-se ter combinado as características dos progenitores como qualidade de grão, resistência à brusone, tolerância à ferro, potencial produtivo e adaptação a região.

Assim como no ensaio avançado, também no ensaio preliminar da safra 2000/01, duas linhagens do cruzamento IRGA 2423 apresentaram, juntamente com a cultivar IRGA 417, os mais altos rendimentos (Tabela 3).

De uma maneira geral, o ciclo dos materiais variou entre o da cultivar precoce IRGA 417 e o da cultivar de ciclo médio BR-IRGA 410, embora alguns materiais tenham apresentado ciclo mais longo. Em relação a esterilidade de espiguetas, observou-se que embora variável, alguns genótipos mostraram esterilidade baixa, o que pode estar relacionada a uma coincidência do período reprodutivo com condições climáticas mais favoráveis.

Na seleção dos genótipos promissores considerou-se também as avaliações para qualidade, principais doenças, toxidez por ferro e comportamento industrial, visando manter somente os materiais com comportamento no mínimo semelhante às testemunhas.

Tabela 1 - Rendimento de grãos, floração, esterilidade de espiguetas e estatura de 32 genótipos de arroz irrigado do ensaio de rendimento preliminar em Santa Vitória do Palmar, safra 1999/2000. IRGA / EEA. Cachoeirinha, RS, 2001.

Genótipos	Rendim. de grãos (t/ha)	Floração (d)	Esterilidade (%)	Estatura (cm)
IRGA 417	10,66 a	83	9,8	73
IRGA 411-1-6-1F-A	10,12 ab	86	7,6	77
IRGA 2412-4-3V-1V	9,91 abc	87	22,3	77
IRGA 2427-1-1V-1V	9,81 bcd	91	18,4	71
IRGA 2412-5-6V-3V	9,71 bcd	89	17,3	69
IRGA 2413-1-8V-2V	9,42 b-e	85	16,7	74
IRGA 2409-3-1V-1V	9,36 b-f	98	15,9	77
IRGA 318-11-6-8-2-A1-2	9,24 c-f	88	25,7	74
IRGA 2427-1-1V-2V	9,18 c-g	91	19,5	74
IRGA 2413-5-11V-1V-1	9,16 c-g	92	15,3	74
INIA Tacuari	9,08 c-h	88	14,0	80
IRGA 2413-5-1V-3V	8,93 d-i	89	21,1	76
IRGA 959-1-2-2F-5-2-4-D-4	8,92 d-i	93	21,5	74
EL PASO 144	8,64 e-j	95	18,5	75
IRGA 959-1-2-2F-5-2-5-B-8	8,60 e-j	92	18,8	76
IRGA 2412-4-7V-2V	8,55 e-k	101	16,0	74
BR-IRGA 410	8,50 f-l	93	20,8	80
IRGA 2412-4-3V-2V	8,30 g-m	98	26,1	77
IRGA 2438-7-1V-3V-2	8,21 h-m	91	20,9	75
IRGA 2423-2-2V-1V	8,07 i-n	92	29,5	74
IRGA 2413-5-11V-3V-2	8,02 j-n	90	25,7	73
IRGA 2412-9-10V-3V	7,86 j-o	102	25,4	78
IRGA 2412-7-5V-2V	7,71 k-p	102	25,2	80
IRGA 2423-2-13V-1V	7,66 l-p	101	18,4	75
IRGA 2413-1-13V-1V	7,54 m-p	96	21,7	76
IRGA 2412-4-8V-2V	7,53 m-p	98	20,1	77
IRGA 2412-4-6V-3V	7,31 nop	103	22,0	75
IRGA 2413-2-19V-1V	7,24 nop	101	28,1	73
IRGA 2423-3-6V-3V	7,05 op	101	29,8	73
IRGA 2438-7-1V-3V	6,86 pq	95	23,6	78
IRGA 2413-1-2V-1V	6,82 pq	99	33,2	78
IRGA 2413-4-5V-4V	6,18 q	102	31,3	71
MÉDIA	8,44			
C.V. (%)	5,5			

Médias seguidas por letras distintas, na coluna, diferem entre si, pelo teste de Duncan, ao nível de 5% de probabilidade.

Tabela 2 - Rendimento de grãos, floração, esterilidade de espiguetas e estatura de 24 genótipos de arroz irrigado do ensaio de rendimento avançado em Santa Vitória do Palmar, safra 2000/01. IRGA / EEA. Cachoeirinha, RS, 2001.

Genótipos	Rendim. de grãos (t/ha)	Floração (d)	Esterilidade (%)	Estatura (cm)
BR-IRGA 410	9,84 a	94	20,4	80
IRGA 2423-2-10V-1V-4-A	9,49 ab	90	10,5	82
IRGA 2423-2-10V-1V-3-A	9,43 ab	98	12,4	86
IRGA 2423-2-10V-2V-2	9,12 abc	91	20,9	83
IRGA 2422-7-8V-2V-1-A	9,06 abc	99	15,4	77
IRGA 2427-1-1V-3V	9,05 abc	89	13,9	84
IRGA 2422-11-11V-2V-1-A	8,99 abc	90	21,4	83
EL PASO 144	8,91 abc	92	11,9	86
IRGA 2427-1-1V-1V	8,90 abc	89	14,1	84
IRGA 417	8,83 abc	88	11,3	84
IRGA 959-1-2-2F-5-2-4-D-5-D	8,62 a-d	95	16,8	84
IRGA 2423-2-7V-1V-2	8,61 a-d	91	7,3	89
IRGA 2409-3-1V-1V	8,60 a-d	94	15,7	85

Cont. da Tabela 2

IRGA 2412-9-1V-2V-6	8,56 a-d	89	13,5	83
IRGA 318-11-6-8-2-A1-2	8,48 a-d	87	7,7	85
IRGA 2412-9-10V-3V-1	8,47 a-d	97	17,2	77
IRGA 2412-4-3V-1V-5-A	8,44 bcd	91	7,2	84
IRGA 2412-9-10V-3V-2	8,22 b-e	93	11,1	88
IRGA 2413-5-13V-2V-2	7,89 cde	91	20,5	82
IRGA 2422-7-5V-2V	7,85 cde	91	17,4	84
IRGA 2413-5-13V-2V-1-B	7,78 cde	91	14,4	82
IRGA 2554-5-1V-1V-2	7,29 def	89	19,6	80
IRGA 2414-1-7V-5V-3	7,11 ef	88	11,9	90
IRGA 2554-5-1V-1V-1	6,38 f	97	11,8	82
MÉDIA	8,50			
C.V. (%)	8,3			

Médias seguidas por letras distintas, na coluna, diferem entre si, pelo teste de Duncan, ao nível de 5% de probabilidade.

Tabela 3 - Rendimento de grãos, floração, esterilidade de espiguetas e estatura de 36 genótipos de arroz irrigado do ensaio de rendimento preliminar em Santa Vitória do Palmar, safra 2000/01. IRGA / EEA. Cachoeirinha, RS, 2001.

Genótipos	Rend. de grãos (t/ha)	Floração (d)	Esterilidade (%)	Estatura (cm)
IRGA 2423-2-10V-1V-3-E	10,20 a	93	9,9	95
IRGA 2423-2-10V-1V-3-D	9,72 ab	91	11,3	97
IRGA 417	9,48 abc	86	18,1	88
IRGA 2423-2-2V-1V-3-A	9,11 bcd	89	9,1	85
BR-IRGA 410	9,08 bcd	93	10,8	95
IRGA 2554-13-6V-4V-4	9,04 b-e	84	8,8	84
FL04-11-1V-1V-1	8,99 b-f	87	21,4	89
IRGA 2423-2-13V-1V-1-C	8,95 b-g	95	8,0	95
IRGA 2554-5-1V-1V-6	8,84 c-g	86	15,8	87
IRGA IRGA 2412-4-8V-2V-4	8,79 c-g	96	8,2	91
IRGA 2505-3-2V-1V-1	8,78 c-g	84	8,0	80
IRGA 2409-3-1V-1V-1	8,77 c-g	94	12,0	93
FL05-28-1V-2V-1	8,70 c-h	89	22,0	87
IRGA 2423-2-13V-2V-3	8,70 c-h	90	9,5	94
IRGA 2423-2-13V-1V-1-A	8,54 d-h	96	8,5	101
IRGA 2427-1-1V-2V	8,52 d-h	89	20,9	87
IRGA 2412-4-7V-2V	8,51 d-h	96	7,4	92
IRGA 959-1-2-2F-5-2-4-D-5-A	8,39 d-i	94	11,6	88
IRGA 2413-2-16V-2V-1	8,31 d-j	87	17,8	88
IRGA 2515-2-1V-1	8,31 d-j	97	5,7	94
IRGA 2423-3-4V-1V-1-A	8,15 e-j	88	15,0	85
IRGA 959-1-2-2F-5-2-4-D-5-B	8,15 e-j	95	14,4	89
IRGA 959-1-2-2F-5-2-4-D-5-C	8,14 e-j	94	14,8	87
IRGA 2553-1-2V-1V-2	8,09 f-k	87	18,2	87
IRGA 2554-5-1V-1V-4	8,08 f-k	88	14,0	86
IRGA 959-1-2-2F-5-2-4-D-5-E	8,06 g-k	94	11,1	87
IRGA 2423-2-3V-2V-1-A	7,83 h-l	90	10,1	92
CT 10554-4-4-2-2-M	7,82 h-l	96	22,5	94
IRGA 2554-2-5V-1V-1	7,52 i-l	92	24,5	90
IRGA 2413-4-5V-2V-2-E	7,45 jkl	87	20,7	89
IRGA 2413-5-11V-3V-2	7,43 jkl	87	22,0	87
IRGA 2540-3-2V-2V-1	7,25 kl	86	13,0	86
IRGA 2413-5-11V-3V-1-A	7,21 kl	87	25,5	86
IRGA 2438-7-1V-3V-4	7,14 l	96	14,8	96
CT 10816-2-CA-12-M	7,03 lm	91	19,7	97
INIA TACUARI	6,31 m	87	22,7	92
MÉDIA	8,28			
C.V. (%)	5,9			

Médias seguidas por letras distintas, na coluna, diferem entre si, pelo teste de Duncan, ao nível de 5% de probabilidade.